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Abstract

Object‐based image analysis (OBIA) is a method of assessing remote sensing data that

uses morphometric and spectral parameters simultaneously to identify features in

remote sensing imagery. Over the past 10–15 years, OBIA methods have been intro-

duced to detect archaeological features. Improvements in accuracy have been

attained by using a greater number of morphometric variables and multiple scales of

analysis. This article highlights the developments that have occurred in the application

of OBIA within archaeology and argues that OBIA is both a useful and necessary tool

for archaeological research. Additionally, I discuss future research paths using this

method. Some of the suggestions put forth here include: pushing for multifaceted

research designs utilizing OBIA and manual interpretation, using OBIA methods for

directly studying landscape settlement patterns, and increasing data sharing of

methods between researchers.

KEYWORDS

automated feature extraction, landscape analysis, machine learning, object‐based image analysis,

pattern recognition, remote sensing
1 | INTRODUCTION

Researchers in many fields – including computer science and geogra-

phy – have adopted machine learning algorithms to process remote

sensing imagery (see Mountrakis, Im, & Ogole, 2011). In the late

1990s and early 2000s, a form of machine learning known as

object‐based image analysis (OBIA) was developed (Blaschke,

2010), but only recently have archaeologists utilized these methods

(e.g. De Laet, Paulissen, & Waelkens, 2007; Menze, Ur, & Sherratt,

2006). In the last ~15 years, archaeologists have used a variety of

OBIA techniques that are highly successful in extracting features of

interest from large‐scale datasets at faster rates and lower costs

than manual processing (Bennett, Cowley, & De Laet, 2014, 897).

Yet, there is much more that these methods can do to advance

our understanding of the human past.

Today, there have been a number of significant studies using

OBIA methods within archaeological contexts, but these studies

are not evenly distributed geographically (see Table 1). Many
wileyonlinelibrary.
focus on European localities, but fewer focus on the Americas,

Asia, Africa, or island regions. Furthermore, most archaeological

publications using OBIA methods are identifying potential sites,

but they are not addressing potential settlement patterns that

emerge from their results. This is important because future

research should use these methods to answer archaeological

questions concerning populations, socio‐political organization, and

past peoples at large.

This article serves as a review of object‐based machine learning

methods that archaeologists have applied in landscape‐scale remote

sensing analysis – including aerial and spaceborne data. I will detail

the progress that has been made with these techniques as well as

the avenues archaeologists are yet to travel. I begin by reviewing

the basic concepts of OBIA and how it operates. I follow with a

comprehensive summary of archaeological work that has been con-

ducted using OBIA, paying particular attention to the successes

and shortcomings of these studies. Then, I discuss possible future

directions of OBIA and computational archaeology. I illustrate that
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TABLE 1 Archaeological studies using object‐based image analysis
(OBIA) by geographic region

Region OBIA studies

Europe Bescoby, 2006; Cerrillo‐Cuenca, 2017; D'Orazio,
Palumbo, & Guaragnella, 2012; Guyot et al., 2018;
Magnini et al., 2017; Schneider et al., 2015;
Sevara, Pregesbauer, Doneus, Verhoeven,
& Trinks, 2016; Traviglia & Torsello, 2017;
Trier & Pilø, 2012; Trier et al., 2009;
Trier et al., 2015; Verhagen & Drăguţ, 2012;
Zingman, Saupe, Penatti, & Lambers, 2016

North America Davis et al., In Press; Davis et al., 2018;
Johnson & Ouimet, 2014; Kvamme,
2013; Riley, 2009; Witharana et al., 2018

South America Lasaponara & Masini, 2018

Asia De Laet et al., 2007, 2008; De Laet, Paulissen,
Meuleman, & Waelkens, 2009; Harrower,
Schuetter, McCorriston, Goel, & Senn,
2013; Jahjah et al., 2007; Lasaponara
& Masini, 2018; Menze et al., 2006;
Menze, Mühl, & Sherratt, 2007;
Menze & Ur, 2012; Schuetter, et al.,
2013; Van Ess et al., 2006;
Wang et al., 2017

Pacific Islands Freeland et al., 2016
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while archaeologists have just begun to apply OBIA to research

questions, the method offers unparalleled advantages that should

be fully taken advantage of by future archaeological research.
2 | OBJECT‐BASED IMAGE ANALYSIS
(OBIA)

OBIA began to rise in popularity in the early twenty‐first century, and

since that time, uses of these methods have sharply increased

(Blaschke, 2010). Blaschke (2010) attributes this rise to the develop-

ment of a software called eCognition (Trimble, 2016). In addition to

eCognition, several open‐source platforms have been developed for

OBIA analysis [e.g. GEODMA (Körting, Garcia Fonseca, & Câmara,

2013), InterIMAGE (InterIMAGE, 2009), Grass GIS (GRASS Develop-

ment Team, 2018), also see Knoth & Nüst, 2017].

In its most basic definition, object‐based analysis encompasses

‘image‐processing techniques that when applied either result in the

segmentation (i.e. partitioning) of an image into discrete non‐

overlapping units based on specific criteria, or are applied to define

specific multiscale characteristics—from which segmentation may then

be based’ (Hay, Castilla, Wulder, & Ruiz, 2005, 340). Recently, remote

sensing literature has used the term GEOBIA to refer to those applica-

tions of OBIA to Earth remote sensing imagery (Blaschke et al., 2014;

Hay & Castilla, 2008). GEOBIA therefore constitutes a majority of

OBIA applications within archaeology.

In a discussion of automated extraction methods used within

archaeology, one cannot ignore the multitude of studies that have

used pixel‐based classification (e.g. Bennett, Welham, Hill, & Ford,

2012; Campbell, 1981; Custer, Eveleigh, Klemas, & Wells, 1986;

Drager, 1983; Kirk, Thompson, & Lippitt, 2016; Lasaponara, Leucci,

Masini, & Persico, 2014; Lasaponara & Masini, 2007; Meredith‐

Williams et al., 2014; also see Lambers, 2018, for a review of remote
sensing analysis in archaeology). Pixel‐based approaches deal with

the classification of individual pixels in an image into different

categories corresponding to unique landscape features. Researchers

have used these methods within many fields for a variety of purposes

including: land cover and vegetation classification, mapping urban

expansion, and measuring surface temperatures (see Jensen, 2007).

As such, pixel‐based classification is quite useful. However, when

compared to object‐based approaches, OBIA methods are more

accurate for detecting archaeological features (see De Laet et al.,

2007; De Laet, Music, Paulissen, & Waelkens, 2008; Sevara &

Pregesbauer, 2014).

OBIA methods, in contrast to pixel‐based methods, identify fea-

tures using multiple variables. These include pixel value, object shape,

textural information, neighbourhood analysis, and geographic context

(Blaschke, 2010, 3; Blaschke et al., 2014). By utilizing multiple param-

eters simultaneously, OBIA is well suited for identifying features that

are small, structurally homogeneous, and display differences with local

topography (Davis, Sanger, & Lipo, 2018). OBIA builds on longstanding

practices of remote sensing analysis including segmentation, edge

detection, and classification (Blaschke, 2010, 3; see Kumar, Raj Kumar,

& Reddy, 2014; Weng, 2010, for reviews of different types of seg-

mentation and classification). As such, some have considered OBIA

to be one of the greatest achievements in image processing of the

twenty‐first century (Arvor, Durieux, Andrés, & Laporte, 2013). One

limitation of OBIA is that it requires very high‐resolution datasets to

work effectively (Blaschke et al., 2014, 181). However, as the spatial

resolutions of remotely sensed data have improved, the accuracy

and use of OBIA techniques have also increased (Hay et al., 2005).
3 | OBIA AND MACHINE LEARNING IN
ARCHAEOLOGY

Object‐based analysis of remote sensing data has only been exten-

sively utilized by archaeologists for about 15 years. The number of

peer reviewed publications using these methods within archaeological

contexts is small (< 40) but growing (see Table 2). Additionally, a great

deal of work has been presented on the use of OBIA at archaeological

conferences.

Beginning in the first decade of the twenty‐first century,

researchers began to implement object‐based computer algorithms

to detect archaeological features in a systematic fashion. The first

archaeological research implementing OBIA was primarily concerned

with identifying large‐scale linear features. For example, Bescoby

(2006) used a mathematical function known as a Radon transform

(which can determine the most common alignment and orientation

of features within an image) and segmentation procedures to detect

linear Roman structures in satellite imagery. Within a few years, more

publications began to emerge using OBIA methods (e.g. De Laet et al.,

2007; Jahjah, Ulivieri, Invernizzi, & Parapetti, 2007; Van Ess et al.,

2006). All of these studies focus primarily on the detection of archae-

ological deposits, but Jahjah et al. (2007) also look at how OBIA tech-

niques can monitor sites, document their preservation levels (also see

Van Ess et al., 2006), and enhance the digitization of archaeological

data acquired from remote sensing sources. As the resolution of



TABLE 2 Outline of developments of object‐based image analysis (OBIA) as a method in archaeology from 2000 to the present

Time period Advances Limitations

2000–2010 • Segmentation and mathematical algorithms (Bescoby, 2006)

• Edge detection for roadway identification (De Laet et al., 2007)

• Morphometric variables used for classification include:
• Shape (De Laet et al., 2007; Menze et al., 2006)

• Compactness and smoothness (De Laet et al., 2007)

• Colour/pixel value (Jahjah et al., 2007)

• Neighbourhood analysis (De Laet et al., 2007, 2008, 2009)

• Elevation (Menze et al., 2006)

• Pattern recognition (template matching) is implemented as
an automatic detection method (Trier et al., 2009)

• Most studies use two‐dimensional (2D) aerial
and satellite imagery, not three‐dimensional
(3D) topographic datasets such as LiDAR
(Menze et al., 2006 is the exception).
This limits the variables that can be
used to identify features.

• Low number of morphometric criteria
were inefficient at capturing morphological
diversity of certain feature types

• High number of false‐positive and
false‐negative results (e.g. De Laet et al.,
2007, 2008, 2009; Menze et al., 2006,
2007; Trier et al., 2009)

2010–2015 • Use of LiDAR and 3D datasets becomes prevalent

• Morphometric variables used for classification include:
• Elevation, slope, and curvature (Schneider et al., 2015;

Verhagen & Drăguţ, 2012)

• Nearest neighbour analysis, size, shape, and circularity
(Harrower et al., 2013; Scheutter et al., 2013)

• Hillshade and topographic position index
(Schneider et al., 2015)

• Principle component analysis (Chen, Comer,
Priebe, Sussman, & Tilton, 2013)

• Orientation and topographic contours
(D’Orazio et al., 2012; Figorito & Tarantino, 2014)

• Eccentricity (Figorito & Tarantino, 2014)

• Volume (Menze & Ur, 2012)

• Pattern recognition (template matching) continues
to be utilized (Kvamme, 2013; Schneider et al., 2015;
Trier et al., 2015; Trier & Pilø, 2012)

• Increased accuracy achieved by:
• Use of statistical classifiers (Chen et al., 2013;

Trier et al., 2015)

• Using multiple datasets to cross‐reference automated
results from different sources (Trier et al., 2015)

• Using multitemporal datasets to account for possible
seasonal lapses in visibility in remotely sensed
imagery (Menze & Ur, 2012)

• Spatial resolution of remote sensing data (> 1 m)
sometimes prevent accurate detection of small
deposits (Verhagen & Drăguţ, 2012)

• Many of these methods have significant issues
with false‐positive
and false‐negative results (e.g. Kvamme, 2013;
Harrower et al., 2013; Scheutter et al., 2013;
Schneider et al., 2015; Trier & Pilø,
2012; Trier et al., 2015)

• Some methods cannot detect features
(or present false positives) that are located in
close proximity to certain types of topographic
anomalies (e.g. D'Orazio et al., 2012; Trier et al.,
2015; Trier & Pilø, 2012)

2015–2018 • Co‐opting of hydrological depression analyses for mound detection
(Davis et al., In Press; Freeland et al., 2016)

• Morphological variables used for classification include:
• Circularity (Davis et al., 2018; Freeland et al., 2016;

Witharana et al., 2018)

• Rectangularity (Zingman et al., 2016)

• Area (Davis et al., 2018; Magnini et al., 2017;
Witharana et al., 2018)

• Length and width (Magnini et al., 2017; Toumazet,
Vautier, Roussel, & Dousteyssier, 2017)

• Size (Cerrillo‐Cuenca, 2017; Davis et al., 2018;
Zingman et al., 2016)

• Curvature (Cerrillo‐Cuenca, 2017)

• Edge detection (Traviglia & Torsello, 2017;
Witharana et al., 2018; Zingman et al., 2016)

• Elevation (Davis et al., 2018; Guyot et al., 2018)

• Multiscalar analysis with multiple datasets are incorporated
to cross‐validate results at small‐to‐large scales
(Guyot et al., 2018; Witharana et al., 2018)

• Pattern analysis continues to be used
(Davis et al., 2018; Trier et al., 2015; Wang et al., 2017)

• False‐positive and false‐negative results
(Freeland et al., 2016; Schneider et al.,
2015; Trier et al., 2015; Witharana et al., 2018)

• Lack of temporal control during feature detection
(Traviglia & Torsello, 2017)

• Small sample sizes for pattern recognition
(Davis et al., 2018; Wang et al., 2017;
Zingman et al., 2016)
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remote sensing data improved, smaller features were soon the subject

of detection via automated processes (e.g. Magnini, Bettineschi, & De

Guio, 2017; Wang, Hu, Wang, Ai, & Zhong, 2017; also see Beck, Philip,

Abdulkarim, & Donoghue, 2007).

The research conducted prior to 2010 illustrates the first attempts

at defining archaeological deposits as objects in a manner that com-

puters can understand and replicate via segmentation and classifica-

tion procedures. Variables including shape, compactness, texture,

and colour are all implemented as parameters for detecting likely

archaeological features (De Laet et al., 2007; Jahjah et al., 2007; see

Table 2). However, most of these studies use only two‐dimensional

(2D) satellite imagery, and three‐dimensional (3D) topographic data

[such as LiDAR (light detection and ranging)] is not analysed using

OBIA [Menze et al. (2006) is one exception]. Furthermore, these early

studies suffer from high rates of false‐positive identifications, which is

a result of the quality of the data used and the variables incorporated.

Implementing OBIA with a greater number of variables (including mul-

tiple scales of analysis) and using higher‐resolution datasets improves

accuracy for archaeological prospection (e.g. Guyot, Hubert‐Moy, &

Lorho, 2018; Sevara & Pregesbauer, 2014, 142; Witharana, Ouimet,

& Johnson, 2018).

By the beginning of the 2010s there is an increase in archaeolog-

ical studies analysing LiDAR and topographic datasets – in addition to

2D satellite and aerial imagery – using OBIA procedures (e.g. Trier &

Pilø, 2012; Verhagen & Drăguţ, 2012). By incorporating 3D data, the

detection of archaeological features becomes easier, as researchers

can now incorporate topographic information in multiple dimensions.

For example, Verhagen and Drăguţ (2012) use elevation, slope, and

curvature as parameters for segmentation and classification of land-

forms. Although their method is not perfectly accurate – a large part

of which is due to the resolution of the datasets used (5 m) and the

number of variables included in the segmentation procedure –

Verhagen and Drăguţ (2012) illustrate how incorporating 3D morpho-

logical and morphometric variables, in addition to 2D profiles, can
TABLE 3 Publications using object‐based image analysis (OBIA) as a prim

Research goal
Nu
pub

Identification 28

Preservation/monitoring 6

Mapping/digitization of archaeological features 3

Analysis of populations, social organization, settlement patterns, etc. 4

Notes: Some publications fall into multiple categories, and as such are listed m
table.
greatly enhance our ability to detect above‐ground archaeological

structures.

Trier and Pilø (2012) show how pattern recognition via template

matching can incorporate many of these morphometric properties into

the classification of topographic data (e.g. LiDAR). The procedure

involves the creation of samples of known features of interest (i.e.

templates) from digital elevation models (DEMs) using different scales

and resolutions. The template matching algorithm is then conducted

on each DEM and the computer extracts identifications that overlap

between the different scales – thereby acting as a cross‐check

between each iteration of the algorithm. The method assesses each

feature for its degree of statistical similarity to the templates and

assigns a corresponding confidence interval. The final results are then

field‐tested by archaeologists. This procedure – which several

researchers have used in different variations (e.g. Kvamme, 2013;

Schneider, Takla, Nicolay, Raab, & Raab, 2015; Trier, Larsen, &

Solberg, 2009; Trier, Zortea, & Tonning, 2015) proves successful in

the identification of previously detected and undetected archaeologi-

cal structures. As with earlier studies, however, template matching is

limited by its number of false‐positive and false‐negative results.

Subsequent research has implemented a slew of new variables

including topographic measurements such as hillshade, slope, and

topographic openness (see Table 2). The results of these studies indi-

cate a positive correlation between the number of factors accounted

for during OBIA procedures and accuracy. However, if the parameters

chosen do not match the features that are being sought after then the

algorithm will not work. As such, an expert knowledge of the study

area is an essential prerequisite for using automated detection

methods.

The increase in studies post‐2010 sees a slight diversification in

the use of OBIA methods, but as Table 3 shows, most studies use it

for the sole purpose of automating the detection of archaeological

features (e.g. Davis et al., 2018; Sevara & Pregesbauer, 2014; Trier

et al., 2015; Trier & Pilø, 2012; Verhagen & Drăguţ, 2012). Some
ary method organized by their research goals

mber of
lications References

Bescoby, 2006; Cerrillo‐Cuenca, 2017; Chen et al., 2013;
D’Orazio et al., 2012; Davis et al., 2018, in press;
De Laet et al., 2007, 2008, 2009; Figorito & Tarantino,
2014; Freeland et al., 2016; Guyot et al., 2018;
Harrower et al., 2013; Jahjah et al., 2007; Kvamme,
2013; Menze et al., 2006, 2007; Schneider et al., 2015;
Schuetter et al., 2013; Sevara & Pregesbauer, 2014;
Sevara & Pregesbauer, 2014; Toumazet et al., 2017;
Traviglia & Torsello, 2017; Trier et al., 2009, 2015;
Verhagen & Drăguţ, 2012; Witharana et al., 2018;
Zingman et al., 2016

Lasaponara & Masini, 2018; Magnini et al., 2017;
Sevara & Pregesbauer, 2014; Trier & Pilø, 2012;
Van Ess et al., 2006; Wang et al., 2017

Lasaponara & Masini, 2018; Sevara & Pregesbauer,
2014; Witharana et al., 2018;

Cerrillo‐Cuenca, 2017; Cordero Ruiz et al., 2017;
Freeland et al., 2016; Menze & Ur, 2012

ultiple times. There is a total of 35 sources that have been included in this
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researchers, however, are using OBIA to protect and monitor sites at

risk of destruction (e.g. Lasaponara & Masini, 2018; Magnini et al.,

2017; Schneider et al., 2015; Trier & Pilø, 2012; Wang et al., 2017)

and to develop more complete maps of archaeological activity to con-

duct further analysis of settlement patterning and sociopolitical orga-

nization (e.g. Cerrillo‐Cuenca, 2017; Cordero Ruiz, Cerrillo Cuenca, &

Pereira, 2017; Freeland, Heung, Burley, Clark, & Knudby, 2016).

The most recent archaeological uses of OBIA and machine learn-

ing yield highly accurate results (Freeland et al., 2016; Guyot et al.,

2018; Lasaponara & Masini, 2018; Wang et al., 2017). Freeland et al.

(2016) demonstrate the first use of hydrological depression algorithms

for archaeological mound detection. In this instance, an inversed DEM

was created and processed through an algorithm that looks for topo-

graphic depressions, effectively identifying and mapping mound fea-

tures (also see Davis, Lipo, & Sanger, in press). The work of Guyot

et al. (2018) is a strong case for the use of automated object extraction

methods within archaeology, as their multiscalar algorithm success-

fully identified over 2000 Neolithic burial mounds, while false posi-

tives (n = 41) and false negatives (n = 46) were minimal. The lesson

from this latest research are simple: landscape level archaeological

prospection algorithms must be multiscalar. Furthermore, topographic

data are invaluable for the automated identification of archaeological

deposits. With very‐high resolution datasets and the accuracy

improvements acquired in recent research, OBIA shows promise for

highly accurate automated prospection.1
3.1 | Limitations and criticisms

Despite the many successes of OBIA methods within archaeology,

there are many who are skeptical of the feasibility of automated

detection algorithms – specifically for large‐scale landscape analysis

(e.g. Casana, 2014; Hanson, 2010; Parcak, 2009). Parcak (2009,

110) claims that automated archaeological site detection is impossi-

ble because every archaeological project is dependent on local vari-

ables. But local variables are precisely what OBIA can take into

consideration when analysing remote sensing data, and regionally

specific algorithms are essential for the success of automated

prospection (see Davis et al., 2018). Parcak (2009,110) goes on to

state that computers cannot pick up on the same subtleties in

remotely sensed data as humans can by eye. However, the very fact

that recent studies using automated means have detected sites that

manual analysis has overlooked directly challenges this claim (e.g.

Davis et al., 2018; Witharana et al., 2018).

In discussing the latest state of remote sensing research within

archaeology, Opitz and Herrmann (2018) devote some of their atten-

tion to the methods involving automated detection of archaeological
1Although this article has focused exclusively on the use of OBIA for large‐scale
remote sensing data such as satellite imagery and LiDAR (GEOBIA), this method

has also been used for other types of image analysis in archaeology. OBIA has

been successful in classifying artefacts and features into statistically significant

types (e.g. Lamotte & Masson, 2016; Ozawa, 1978), studying site formation pro-

cesses (e.g. Sanger, 2015), testing the mineralogical classification of artefacts (e.

g. Aprile et al., 2014; Hein et al., 2018; Hofmann et al., 2013), and researchers

have used it to investigate ground‐based remote sensing data (e.g. Pregesbauer,

Trinks, & Neubauer, 2014). As such, there is much to gain from OBIA methods

within archaeology that goes beyond landscape‐level analysis.
features. Part of their discussion revolves around a distrust of these

methods, and they state:
The reluctance to adopt automated feature extraction …

is motivated by a combination of technological and social

factors. On the technological side, machine learning

approaches to automation remain in their infancy.

Automatic feature extraction for archaeological

materials is still developing and has yet to match the

efficiency of automatic feature extraction for targets

with consistent appearance or for features in uniform

environments. (Opitz & Herrmann, 2018, 30)
The claim that these methods are still new and evolving is very much

true, as this article indicates. Regardless, the infancy of the method is

not a reason to stop developing and improving its ability to discern

information of archaeological significance. OBIA and similar methods

are imperfect and cannot replace manual evaluation completely, but

at the same time, biases in knowledge by data analysts limit the accu-

racy of manual procedures and can lead to omission error (Bennett

et al., 2014; Gheyle et al., 2018). It can never be our goal to completely

automate the archaeological process, and to attempt such a feat

would be a fool's errand. Nevertheless, improving automated methods

to assist in the detection of archaeological deposits is not only an

exciting avenue for future research, but also a necessary task.

Coastal and island regions that are under threat of destruction by

climate change and rising sea levels cannot ever be fully surveyed

using traditional means before their records are severely damaged. It

is therefore imperative to document as much of these areas as we

can before they are lost. By using OBIA and similar methods, we can

conduct systematic surveys of entire areas and document landscapes

efficiently. Thus, it is essential to utilize these techniques to study

the archaeological record in a relatively complete form rather than lim-

iting ourselves to small sample sizes of information.

Despite the benefits offered by OBIA, it is still far more common

for archaeologists to use manual interpretation methods rather than

semi‐automatic means (Quintus, Day, & Smith, 2017, 352; also see

Casana, 2014). Many researchers echo the earlier sentiments of

Parcak (2009) by claiming that automated methods cannot account

for the wide range of variability in the archaeological record. However,

who is to say that one should only use one single automated method

to scan an entire study area? Why not use a multitude of different

algorithms to search for different parts of the record and then go

through all the results by hand to fill in things that OBIA missed (sensu

Bennett et al., 2014)? By using automated detection first, we can be

sure that the entire study area is surveyed systematically without

any lapses. Then by conducting a manual analysis, expert knowledge

can assess the results and potentially identify nearby features that

the automated method overlooked.

Casana (2014) uses ‘brute force’, or manual extraction methods to

survey an area covering 300 000 km2. This process took approxi-

mately 3–4 years. Using automated methods [which Casana (2014)

attempted and stated to be successful], this process could have been

sped up considerably. Quitnus et al. (2017) also illustrate the impor-

tance of manual evaluation, but highlight the fact that manual process-

ing is imperfect, as there are still many false‐positive and false‐
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negative identifications present using this approach. In the span of

two weeks, Quintus et al. (2017) evaluated LiDAR covering approxi-

mately 5–10 km2, whereas semi‐automated OBIA methods have

allowed for the systematic evaluation of LiDAR datasets covering

thousands of square kilometres in the same amount of time (e.g. Davis

et al., 2018).

One thing that is certain is that ground‐testing and manual

analysis following automated detection algorithms is an essential

step (Ainsworth, Oswald, & Went, 2013; Freeland et al., 2016,

72; Quintus, Clark, Day, & Schwert, 2015). Without ground‐

surveys, we cannot confirm the results of remotely sensed analysis

and our knowledge cannot pass beyond a theoretical level.

Although in some instances automated survey may be inappropri-

ate, we must remember that ground‐survey, manual evaluation,

and automated detection algorithms are all useful tools for archae-

ologists, and all possess their own benefits and drawbacks. As

such, archaeologists must not exclude any of these methods out-

right (sensu Hacιgüzeller, 2012).
4 | FUTURE DIRECTIONS

Where do we go from here? Are OBIA and automated object extrac-

tion valuable methods for archaeologists? The answer is a resounding

yes. For areas at risk of development, destruction, or other distur-

bance, OBIA provides an efficient way to survey entire landscapes

with reasonable accuracy. As such, OBIA methods can serve in a

capacity to stop the development and destruction of areas containing

cultural deposits and better understand the spatial distribution of

human settlements.

Additionally, the use of OBIA allows for the re‐visitation of areas

and requires far less time and money than a pedestrian style ground

survey (e.g. Bennett et al., 2014, 897; Davis et al., 2018). This is not

to say that OBIA can detect everything there is to find in any given

area; not even manual evaluation can do that. Rather, OBIA can pro-

vide a baseline by which to assess the probability of cultural features

being present and set in motion a series of intensive ground surveys

to validate these conclusions.

Even if researchers are reluctant to use these methods for the

detection of features, OBIA can still be useful in an archival sense.

Segmentation procedures can digitize archaeological deposits automat-

ically with spatial and morphological accuracy. Archaeologists

have done this with artefacts for statistical and morphometric analyses

(e.g. Aprile, Castellano, & Eramo, 2014; Hein, Rojas‐Domínguez,

Ornelas, D’Ercole, & Peloschek, 2018; Hofmann, Marschallinger,

Unterwurzacher, &Zobl, 2013; Lamotte&Masson, 2016) andhave used

similar methods to study site formation processes (e.g. Sanger, 2015).

There is a lot to gain from OBIA, especially in terms of understanding

landscape‐level archaeological patterns. However, there are certain

avenues of research where these methods are yet to be fully invested:

• First and foremost, the use of OBIA methods must be expanded

into new geographic areas where they have been under‐utilized

or where they are yet to be introduced (e.g. North America, South

America, Africa, coastal islands, etc., seeTable 1). This is especially

important for areas at risk of destruction from sea‐level rises or
currently experiencing violent conflict where cultural heritage is

at risk.

• Second, we must continue developing new approaches that com-

bine automated analysis with manual evaluation and subsequent

field‐testing to create a comprehensive landscape survey proce-

dure. Each of these levels are essential for understanding the

archaeological record. By combining them together, we can study

landscape patterns at multiple scales, which is a vital component

of landscape level archaeological research (e.g. Crumley, 1979;

Millican, 2012; Robinson, 2010).

• Third, future work with OBIA should seek to compare different

methods of automated feature detection (e.g. Davis et al., in

review). By comparing different methods, researchers can best

determine which methods are most appropriate for specific pur-

poses and thereby adopt the successes and avoid the failures

and setbacks of prior studies.

• Fourth, to improve the ability of OBIA to detect archaeological

features, researchers must share their datasets – this includes

new algorithms, computer code, processing steps, and training

data. By sharing this information, archaeologists around the world

can contribute to and access different methods and necessary

training data, thereby increasing and improving the use of OBIA

for archaeological problems. By making code and data available

to all, even the non‐specialist can utilize some of these methods

and contribute to the use of automated object detection.

• Finally, archaeologists should use OBIA for studies beyond the

mere detection of features. Researchers can use detected

objects to discuss broader spatial patterns of the archaeological

record (e.g. Freeland et al., 2016). Although the discovery of

new features is important, it is equally important to begin

analysing this newly generated information to further our

understanding of the human past.
5 | CONCLUSIONS

This article has sought to demonstrate the important advances that

have occurred in applications of OBIA methods within landscape

archaeology. It has also traced some possible paths for the future of

these methods within the discipline. A lot of progress has been made,

and yet there is still a great deal of untapped potential for OBIA to

expand our understanding of the archaeological record. In the future,

we should seek to incorporate (semi‐)automated algorithms with man-

ual analysis to ensure the broadest range of data is acquired. The

importance of systematic documentation is vital in a world that suffers

from cultural site destruction on a daily basis. OBIA is one method that

can help to record, preserve, protect, and study the record of our col-

lective human history.
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